STATUS SUMMARY

InnovatiVe foods that are not shelf stable are being manufactured in increasing.
numbers. Many of these foods rely primarily upon maintenance of proper refrigera-
tion to prevent spoilage and ensure microbial safety. Traditionally, the risk of
growth of pathogenic microorganisms and/or toxin production in foods was deter-
mined through the use of inoculated pack studies. In these studies, foods were
inoculated with a specific amount of a pathogen and the growth or decline of the:
microorganism was monitored during storage by repeated sampling. Now, however,
there are too many products, alternate ingredients, and process variations to conduct
a complete laboratory evaluation of each possible. contingency -and; potential
foodborne pathogen for each product. Research using either microbial broth media
or inoculated packs does not permit quantitative interpolation to untested condi-
tions, particularly when two or more factors interact. For example, a study may
evaluate storage treatments of 15°, 25°,'and 37°C. Simply plotting the microbial
growth at each storage temperature or estimating the microbial growth rates
provides only a subjective estimate of what to expect at 30°C. The increasing power
and widespread availability of personal computers now make it worthwhile to
develop the extensive data bases and equations necessary to create predictive
microbial models..

In essence, microbial modeling is the use of mathematical expressions to
describe microbial behavior. This includes expressions that depict how bacterial
populations change with time and how the rate of change is influenced by environ-
mental conditions. The modeling of microbial populations—particularly those of
foodborne pathogens, coined “predictive food microbiclogy”’—has become an
active field of research. Modeling, however, has always been an integral part of food
microbiology. Most food scientists, for example, do not.give a second thought to the
fact that they are employing mathematical modeling when using D-values and z-
values to describe the thermal resistance of bacteria. ’

Current microbial models can provide “first estimates” of microbial growth or
survival/inactivation, improve laboratory efficiency by suggesting critical areas for
experimental trials and inoculated pack studies, and facilitate development of
‘hazard analysis critical control point{HACCP) programs. This summary briefly
describes the most frequently used microbial models, their use, and their limitations.
Reviews have been published on early modeling (Farber, 1986), the historical
development of models (Whiting, 1994), modeling of shelf:life and safety of
controlled and modified atmosphere packaged foods (CAP/MAP) integrated with
temperature changes (Labuza et al., 1992), modeling of Clostridium botulinum
(Baker and Genigeorgis, 1993), modeling of growth (McMeekin et al., 1993), and
the development of models and software for pathogen growth (Buchanan, 1993,
1992, 1991).

TYPES OF MICROBIAL MODELS -

Models can be classified by the microbiological event studied, the modeling
approach used, or the variables considered. Whiting and Buchanan (1993) recently’
proposed a thrééilevclfcl,assification method described as primary, secondary, and
tertiary. Primary level models describe how microbial numbers change with time in’
a specified environment. These include growth and inactivation/survival models.
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Indirect measures of microbial numbers
(turbidity,electrical conductance) or metabolic

products (toxins, substrates) also can be mod-
eled. A D-value, the time for a populatlon to
decrease 90% at a constant temperature, is a
prrmary model, as is a measure of a
microorganism’s growth rate during the expo-
nential growth phase. Secondary level models
indicate how parameters of primary models
change with respect to one or more environ-
mental or cultural factors (e.g., atmosphere,
pH, temperature, and salt level). The z-value,
the change in temperature needed to decrease
the D-value by 90%, used in thermal process-
ing is an example of a secondary model. Ter-
tiary level modeling applications assist in the
use of primary and secondary level models by
identifying and using pertinent information to
calculate and display desired graphs, predic-
tions, and compansons Examples are math-

-ematical expressions, software packages, and

expert systems. At this level, the user need not
be aware of the equations in the underlying
primary and secondary level models.

_ Modeling Growth. Mathematical models
for describing microbial growth range from
relatively simple estimates based on growth/no
growth responses to more complex treatments
where each phase of the growth cycle is de-

scribed quantitatively. An example of the former

was developed by Meyer et al. (1989) to deter-

_mine the effects of pH and water activity on_

growth of spoilage yeasts in different groups of
foods.

The next level of complexity is the devel-
opment of time-to-growth or lag-time models
that are often used for studying C. botulinum.
Here it is more important to estimate the time
for spore germmatxon/growth or toxin forma-
tion than it is to determine the growth rate of

the bacterium. Secondary level regression equa- -

tions are then developed to relate how environ-
mental factors affect this time. This growth
model has been used to determine the effects of
sodium lactate and sodium chloride on the time
within which toxin is formed by C. botulinum
in'temperature-abused turkey products (Maas,
1993), the effect of temperature and atmo-
sphere on C. botulinum growth in fresh fish
(Baker and Genigeorgis, 1990), and the inter-
action of seven environmental factors on de-
tection of visible mold growth on bakery prod-
ucts (Smith et al., 1988).

Alternatlvely, lag times have been studied
usmg Most Probable Number (MPN) tech-
niques to predict the probability that a single
C. botulinum spore will germinate and grow to
produce toxin within a specific time (Lindroth
and Genigeorgis, 1986). In this approach, a set -

of serial dilutions of a sample were observed
frequently, and the MPN was determined at
each dilution by observin g the pattern of posi-
tive test tubes. Changes in the probability of
spore growth during storage were then de-
scribed by a combination of logistic and re-
gression equations (Genigeorgis et al. 1991;
Roberts et al., 1981).

Developing a primary model to describe
growth kinetics (e.g., lag phase duration, spe-
cific growth rate, and maximum population
densrty) of a microorganism can be as simple -
as using aruler to measure the linear portion of
the growth curve when the data are plotted on
semi-log graph paper; however, during the past
several years, use of sophisticated mathemati-
cal approaches has increased. The most widely
used primary model for describing microbial
growth has become the Gompertz equation
(Gibsonetal., 1987; Gibson and Roberts, 1986).
This four-parameter, asymmetrical, sigmoidal
equation is:

N=A +Cexp(-exp(-B(t-M))) (1)

where N is the log,, of colony forming units/
mL, A is the log, of the initial number (i.e.,
inoculum) of the microorganism, C is the log,,
of the difference between initial and final num-
bers of microorganisms at the stationary phase,
B is a slope term indicating the rate of growth
at the inflection point, M is the time of the
inflection point, and t is time. Indirect param-
eters more familiar to microbiologists can be
calculated by:

Growth rate (N/hr) = BC/e 2)
Lag time (hr) =M - (1/B) €))
Generatlon time (hr) =elog(2)/BC (4)

Maximum population density
MN)=A+C (&)

The modeler fits the equation to the data

points and obtains values for the parameters

(C, M, B) that are specific for that data. The

‘Gompertz equation was selected because it fit

microbial data better than other sigmoidal equa-
tions (Zwietering et al., 1990). Recently,
Baranyietal. (1993), Jones and Walker (1993),
and Whiting and Cygnarowrcz Provost (1992)
proposed mechanistic-based growth models to
replace the empmcal Gompertz model.
Secondary models that describe changes
in parameters of the primary models (e.g.,
Gompertz A, C, B, and M terms) when the
microorganism’s environment is altered have
generally been of three types: a response sur-
face equation (multiple polynomial regression
equations), the Arrhenius relationship, and the




square root (Bélehradek) model. Response sur-

face techniques were developed originally for

process optimization; typically, the equatrons,

contain quadratic or cubic terms and their i in-
teractions. The - logarlthm of a parameter is
frequently modeled as a means of making the
variance homogeneous Equatlons of this type
are descriptive, fitting data containing several
factors without any assumptions about the rela-

tlonshrp between a factor and mrcroblal behav-

jor. The Arrhenius relatronshlp is' the loga-
rithm of therate constant versus the recrprocal
of the temperature in K. Additive versions
include terms for pH and a, (Davey, 1989,
1991), for-example:

In (k) = C#+ C,/T + C,/T? + Cja,, + C,a,* (6)

where k is the growthrate, T is the temperature,
and C —C ‘are parameter ‘values. The square
root model is based upon the linear relation-
ship between the square root of the rate and
temperature (Ratkowsky et al., 1991)‘

1/k - b(T-T,,) )
‘where b is a slope parameter and T, the
temperature where the growth rate extrapo-
lates to zero. This model has also been ex-
: panded/ toinclude the‘temperature of maximum
growth rate, pH, and a,, (McMeekin et al,,
1992):

Vk = bl(ay -2y, ) (PH-PH,, )I°* (T-T . )(8)

where k is the measured rate, a,_. , pH,_,,and

T, are the respective parameter values ex-
trapolated to a rate of zero for the factors a,,,
pH, and T.

To date, the development of tertrary level
programs for the growth of foodborne microor-

ganisms has been limited. The Microbial Food
Safety Research Unit of the U.S. Department

of Agriculture (USDA) Agrrcultural Research.

Service (ARS) Eastern Reglonal Research Cen-
ter (ERRC) has released a program. This ver-
sion provrdes auser-friendly format for appli-
cation of available response surface models for
broth cultures of Salmonella Staphylococcus
aureus, Listeria monocytogenes, Shigella
flexnert, ‘Bacillus cereus, . Aeromonas
hydrophtla ‘and Escherichia coli O157:H7
(Buchanan 1993) ‘This DOS-based PC pro-
gram has a:series of menu screens for entermg
‘information on the desired mrcroorgamsm at-
- mosphere, .initial bacterial populations, pH
'NaCl level, temperature, and NaNO, concen-
‘tration. The program then provrdes estnmates

“of growth kinetics values, time to reach a speci-

fied population, or a graph showing the ex-
pected growth curve. The variables can be.
modified easily, allowing the user to performa.

rapld series of “what if”’ estimates. In the United
Kingdom, the “Food Micromodel” program,

developed by the Mrmstry of Agriculture, Fish-

eries, and Food, has predictive equations for

‘growth of Listeria, Yersinia, non-proteolytic

C. botulinum, Aeromonas, Salmonella, -and

‘Staphylococcus. Factors include temperature,

pH, anda,,. Validation of these equations using
foods from six major groups-(meat, fish, veg-
etables, dairy products, bakery products, and
eggs) is underway. To obtain predictions from
this program, information on the food’s com-
position and other relevant factors is prov1ded

to the program’s microbiologist who runs the
model and provides results and 1nterpretat10ns

The next phase of the tertiary level is an
expert system, several of which are under de-
velopment. These are computer programs that
emulate the reasoning and decision making of
human experts. The programs contain descrip-
tive information, equations, and logical rules.
The user starts with a query, and the system
applies rules to request addltlonal information.
Through dialog, the user retrieves or has de-
sired information calculated. Descriptions of

these systems have been given by Adair and
~Br1ggs (1993), Jones (1993), Voyer and

McKeller (1993), and Zwietering et al. (1992).
Modeling Inactivation/Survival. Mathe-
matical modelmg of the behavior of foodborne
microorganisms began in the 1920s with ther-
mal death time calculations. D- and, z-values
have been used successfully by the canning
industry for over half a century to avoid the

‘hazard from botulinal toxin."An excellent an-

thology of the pioneering papers in the devel-
opment of this model was edited by Goldblith

et al..(1961). This primary model describes a

simple first-order decrease in log numbers with

heating time at a constant temperature. This
‘model remains in use for many thermal inacti-

vation studies (Fupkawaet al., 1992; Mohr and
Simon, 1992; Mackey etal., 1990). Non- linear

‘declines in the log number of survivors over

time, however, are frequently observed and
several alternate models have been developed.
to account for this behavior. For example, a
populatlon dynamics theory Has been proposed
to account for initial decreases or increases in
spore populatrons ‘This theory includes acom-
bination of first-order processes for the rapid
inactivation of less heat-resistant. spores fol-
lowed by a perrod of activation of remaining
spores to a‘more. heat sensitive state, and fi-
nally, inactivation of remaining. spores
(Rodriquez et al.,

“Mathematical
_m0deling\

of the behavior
of foodborne
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thermal
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1992, 1988;. Telxelra and
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Rodriquez, 1990) These concepts were used
to model inactivation of dormant spores in
ultra-high temperature sterilization (Sapru et
al., 1992). Bhaduri et al. (1991) inverted the

' sigmoida] Gompertz equation to describe the

low-temperature thermal inactivation of L.
monocytogenes that showed curves reflectmg
both an initial period of survival and a heat-

resistant subpopulation.

Despite extensive use of models for ther-
mal inactivation of foodborne microorganisms,

there has been relatively little work done on the
development of mathematical expressions to

describe inactivation under ambient or chilled
storage. When placed in an adverse environ-
ment, such as alow pH, microbial populations
decline over time. Their survivor curves, how-

ever, frequently exhibit shoulders and tailing.

The microbial inactivation rate often depends
on combmatlons of 1nh1b1tory factors, none of
which are adequate to cause death alone.

- Several primary models have been used to
depict the inactivation of foodborne pathogens
during storage. Buchanan et al. (1993a) used a
linear model incorporating a term for a. lag
phase duration followed by a first-order de-
ctease to model the inactivation: of L.
monocytogenes. This model was used to study

the interaction between pH and concentration

of lactic or acetlc acids. They observed that the
logarithm of the time for 4 logs of inactivation
was inversely related to the square root of the

“concentration of undissociated acid. A logistic

model originally developed by Kamau et al.

(1990) to describe the enhanced thermal de-

struction of L. monocytogénes and S. aureus
by the lactoperox1dase system was modified to’
provide a primary model for the survival of
foodborne pathogens (Whiting, 1993). This
model allows depiction of both a shoulder and
two slopes the second slope is used to quantify
tailing populations. Both the logistic and linear
models are being used to quantify the effects of
pH, NaCl levels, temperature oxygen avail-
ability, and N aNO, concentration in microbio-
logical media on the survival of Salmonella
and S. aureus (Whiting, 1993) and L. mono-
cytogenes (Buchananetal., 1993a). These data
were evaluated by response surface analysis to
develop secondary models for estimating the

survival of these pathogens i in uncooked meat:

products and other foods.
~ Modeling Changing Conditions. Data for
most models are acquired under constant con-
ditions. Factors such astemperature, pH, water
activity, or atmospherlc composition, however,
seldom remain constant during the manufac-
ture and storage of a chilled food (Labuza et
, 1992). Under cycling conditions, a con-

stant temperature can be determined, one that
would result in the same growthunder variable
conditions. Frequently growth or inactivation
is estimated for a short period of time for the
average conditions of that period. The final
population is estimated by the sequential cal-
culation from one period to the next. This
approach was used successfully to estimate
bacterial growth during cooling of cooked meats
(Gill and Jones, 1991; ; Blankenship et al., 1988;
Gill, 1986). This approach, however, may be
too simple in other circumstances. Fu et al.
(1991) proposed a model for sinusoidally fluc-
tuating temperatures, but found that abrupt,
transitions were not effectively modeled, i.e.,a
history effect exists. Abrupt transitions can
lead to adjustment periods, the extent of which
is dependent on the degree of change a micro-
organism experiences when shifted from the
source medium to the test medium (Baranyi et
al., 1993; Shaw, 1967). Additional research is
needed to determine the.best way to model
ﬂuctuatmg temperatures, changing pH values,
varying a,,, or other food parameters that change
during storage. Packaging material, thermal
properties of the food, and package size affect
the temperature of a food and. would need to be
incorporated into models.

APPLICATIONS

Microbial models are valuable tools for
predicting the growth or survival of microor-
ganisms. They are rapidly evolving from a
subject of research and development into tech-
niques used by the food industry and regula-
tory agencies and in general microbial research.
Models are a means of rapidly obtammg an
initial insight into a microorganism’s behavior
and are guides for evaluating potential prob-
lems. The USDA Food Safety and Inspection
Service, for example, has used models tomake
assessments of pathogen growth in proposed
meat product formulations. ‘Models, however,
do not completely replace microbial testing or
the judgement of a trained and experienced
microbiologist. They instead allow microbio-
loglcal assessment to be conducted more rap-
idly, objectively, and cost effectively. Models
can prov1de useful information for making de-
cisions in many situations. These situations are
described below.

Prediction of Safety and Shelf Life.
Growth and survival models can estimate po-
tential risks from pathogens in a food after a
normal or expected abusive storage .period.
Growth models can aid in setting a “pull date™"
by estimating the time for attaining a specified
populatlon of spoilage or pathogenic microor-
ganisms. Addmonally, estimating microbial




behavior for arange of potential environmen-
tal factors for a new food can quickly- hlghh ght
areas of concern and guide design of challenge
tests, storage trials, or other techmques that
will more precisely determine risk.

Quality Control. Models can aid in the
development 6f HACCP programs by showing
what conditions permit growth or survival and
thereby 1dent1fy critical control points. Quantl-
tative estimates of microbial growth at various
levels of environmental or composmonal fac-

tors can mdlcate allowable ranges for that fac-

“tor. This becomes partlcularly 1mportant in

foods that rely on the interaction of several

factors to control microbial growth. An out-of-
process ‘event, such as a food 1nadvertently
lacking the intended salt or experiencing a
period of inadequate refri geration, can beevalu-
ated for the m1crob1al ‘consequences: This

assists in makmg more ‘objective, cons1stent~

declsrons to rework, rapidly utilize, or scrap a
food or ingredient without waiting for testing.
- Product Development. Changes in a
food’s composmon ‘or a new formulation can
“quickly be evaluated for-pathogen growth or
survival. Models show whrch factors have major
influences on microbial populatlons and can
compare new versus old formulatlons
‘Education. Explanations for nontechnical
people can be enhanced by models. By gener-
ating graphs or estimates of the time to a criti-
‘cal microbial populatron, models-can demon-

‘strate dramatlcally the importance of maintain--

ing proper temperatures or the benefits that

‘high- quality raw: ‘materials w1th low initial

microbiological counts have on a food’s-mi-
/croblologlcal safety and quality. The models
are used also in food microbiology courses to
illustrate the effects of factors that control
microbial growth.

Laboratory Plannmg and Data Analy-
sis. Efficrency is promoted when a mode]’s
.predlctlons guide the design of a testing pro-

‘gram. This saves resources,’ time, and money

and-permits the laboratory to concentrate its
_efforts on critical steps. Models are. used rou-

tinely in the USDA/ARS/ERRC’s Microbial

Food Safety Research Unit laboratory to:de-
vise work schedules for samplmg timed. ex-
’perlments

Modeling is becoming a routine technique

“for analysis of microbial data. The mathemati-
cal fit prov1des an unbiased estimate of the
parameter values ‘that describe a particular
microbial response. These values can then be
Iaveraged orotherwise manipulated: ‘mathemati-
cally and error estimates can be _determined.

Simply plotting‘a growth curve will no longerf

be an adequate presentation or analysrs of mi-

crobial data.
Using mathematical models for the vari-
ous tasks described above increases “under-

standing of the factors that govern microbial

growth or 1nact1vat10n in foods, thereby pro-
viding processors greater confidence in the
safety of their processes and products. In turn,

‘this: knowledge enables the manufacturer to
" create more sophisticated and effective HACCP

programs.

‘CONSIDERATIONS

Most modelmg uses amixture of strains of

‘microorganisms, since the _growth or survrval
'predlcted by the model reflects the fastest grow-

ing or hardiest strain in the mixture, respec-

lt1vely Ideally, mnxtures of strains represent
‘the most frequently occurring strains with “nor-

mal” characteristics that are likely to be present
in foods. An atyplcal strain which is infre-
quently present, the heat-resistant Salmonella
senftenberg, for example, should have a sepa-
rate heat 1nact1vat10n model. The model user
would check both models and subsequently

‘make an. appropnate judgement.

Recent studies have indicated that the con-

~d1t10ns under which inocula were grown can

have a substantlal impact on growth or inacti-
vation kinetics. The data used to generate most
models are based on cells grown to the late log
or statlonary phase in a favorable environment
prior to being used to inoculate a test culture.

Such cells can have dlfferences in their lag-
times or survival. charactenstlcs from expo-

nential - growth . phase cells, cells grown at
nonoptimal temperatures, or cells pre- -adapted

to-acidic or alkaline pHs Models have gener-
ally been created using stationary-phase cells

grown in glucose-containing media that pro-
duced a depressed pH. These cells tend to have

longer lag phases and survival when placedin -

acid énvironments than cells maintamed at
neutral pH values.

Most microbial models are based on re-
gresswn equatlons and are subject to the as-
sumptlons ‘and cautions' inherent with these
types of analyses. A model should include all
the factors that have a statistically significant
effect on microbial growth or survival. Nearly
all models are based upon 1aboratory studies
using. | controlled temperature, pH, and NaCl
level in a nutritionally rich medium. These

three factors are often the most 1mportant fac--

tors governing microbial behavior in a food,
but any 1mportant additional factor would have
an impact on the accuracy, of the model. In the
three factor model (temperature, pH and NaCl),
for . example,ethe presence -of an. unmodeled

ant1mlcrob1al agent would typically result in’

“Models can

atdm the

programs . . .

development of
HACCP

»
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over-estimated growth rates or survival times.
Predictions from all models are most accurate
inthe central area of their design, i.e., where all

‘experimental factors are close to their mid-
point. As any factor changes, moving toward»

its limits, there will be greater variation in the
predictions. Thus, extrapolating beyond the
experimental ranges is not recommended.

An estimate of the variation about any

prediction is desirable; most models to date,
however, do not explicitly provide this infor-

mation. The user needs to be aware of various

error terms and any transformations used, e.g.,
modeling the log of the time parameter. As
time increases, the confidence interval around
a prediction increases. Often, estimates of the

variability are relatively large due to the inher-

ent variability of microbial systems, particu-
larly those under stress conditions. One should
remember, however, that while this isless than
desirable, it is generally amuch more objective
wayto estimate microbiological behavior than
the “informed guesses” routinely made in the
absence of models or other systematic means
of evaluating mxcroblologlcal data.

An integral part of model development
must be validation of the models. General
models for growth or survival are derived typi-
cally in broth media. After collecting an appro-

'pnate number of curves and calculatmg the

primary and secondary models, it is 1mp0rtant
to test new trials against the regression equa-
tions and compare the closeness of fit. This
provides an estimate of the “goodness of fit”
and shows where-additional data are needed.

The next stage of validation is to test the pre-
dictions against microbial behavior invarious
foods. This will demonstrate the limitations of

the model and, when predictions are poor,

suggest additional factors necessary to make
the model more widely applicable. Models

cannot be used with confidence until this vali-

dation is done. Users of a model should con-

“duct a sufficient number of trials with their

‘products to ensure the validity of a model

before accepting the model’s predictions.
Many broth- and food-based models are

designed to be “fail-safe.” This means that the
growth rate predicted from the model will be
faster or a predicted lag time will be shorter
than that which actually occurs in the food. The

user should check the hterature to determine -

whether this is the case.
Slgmflcam strides have been made in the

past five years in the development of effective

mathematical models for assessmg the effects

and interactions of several important variables-

(i.e., temperature, pH, water activity, and

NaNO,) on the growth of foodborne patho-

gens. The next level of sophistication, how-
ever, needs to be addressed. Currently, most
models do not separate the effect of type and
concentration of organic acid from the pH: The
activities of commonly used antimicrobials,

suchas phosphates, sorbates, and bacteriocins,

have not been quantified systematically. The
use of humectants other than NaCl has not been
evaluated adequately, nor have the impacts of
microbial competition or time of spoilage been
incorporated. Appropriate methods to model
changing conditions, particularly the lag phase,
are needed. These questions are being actively
addressed by groups of investigators world-

‘wide and continuing xmprovements in models
.are anticipafed.

Because of the large data bases necessary

for development of microbial models, interna-
tional cooperation between modelers is in-

creasing to expand the scope of the models and
to avoid duplication of effort. The European
Economic Community’s “FLAIR” (Food
Linked Agro Industrial Research) program pro-
motes personnel exchanges, coordinated re-
search, and data exchange. A major step for-
ward in consolidating the international efforts
inmodeling was made in 1992 when the USDA/
ARS organized the International Workshop on
the Application of Predictive Microbiology
and Computer Modeling Techniques to the

‘Food Industry. The workshop was attended by

scientists from seventeen countries (Buchanan
et al., 1993b). The details of a four- -country
collaboratwe demonstration project are being
finalized between the Australia, Canada, United
Kingdom and United States, to share data bases
and validate models for the growth of L.
monocytogenes and other foodborne patho-
gens.

Ultimately, mathematical models will serve
as an integral part of microbiological risk as-
sessment by providing a means of calculating
realistic exposure estimates. Three areas need
to be quantitatively estimated to achieve an
effective microbiological risk assessment
(Albanese, 1992):

(1) identify sources of contamination, enumer—‘
ate frequency of occurrence, and quantitate
microbial numbers in raw ingredients;

'(2) understand how pathogens will survive,

grow, and/or produce toxins or other viru-
lence-related factors under the conditions that

exist in foods when they are present; and

(3) identify the human response to the patho-
gen and the infectious dose for various groups
of people.




Methods to estimate the risk from low numbers
of microorganisms. were compared by Haas

(1983) who concluded that it is impossible to

rule out the hypothesis that a single microor-
ganism has a probability of causing disease. -

" These three points must be integrated into
an effective overall model that can be used to
objectively set priorities for addressing micro-
biological food safety concerns. Current ef-
forts in microbial modeling have made great
strides in fulfilling the second area, but desired
integration of risk assessment await advance-
ments in the other two areas: ’

CONCLUSION

The progress in microbial modeling has
been impressive. Models are now a standard
research technique andare a powerful tool in
designing foods and controlling food processes.
‘While models provide increasingly sophisti-

cated estimates of expected microbial behav-

ior and a way for food scientists to work smarter
“and faster, they are not substitutes, however,

for experienced judgement or well-designed

laboratory testing.
‘ estng.
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